Efficient synthesis of trisphenols using reduced sulfonated graphene nanocatalyst under solvent free conditions

Authors

  • Rashid Badri Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.| Department of Chemistry, Science and Research Branch, Islamic Azad University, Iran.
  • Reza Fareghi-Alamdari Department of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran 167653454, I.R. Iran.
  • Samaneh Behravesh Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.| Department of Chemistry, Science and Research Branch, Islamic Azad University, Iran.
Abstract:

This study reports a new methodology for the efficient synthesis of trisphenol compounds using the reaction of 2,6-bis(hydroxymethyl) phenols with phenols under heterogeneous conditions. A sulfonated reduced graphene oxide (RGO-SO3H) nanocatalyst was used to promote the reaction under solvent-free conditions. A range of trisphenol compounds were produced in the presence of this catalyst system in good to excellent yields. In the presence of this catalyst system, a less amount of phenol is required, which improves the environment through its capability in synthesis of trisphenols. The RGO-SO3H catalyst was reusable at least for 8 times in this process without a significant decrease in its catalytic activity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Efficient Synthesis and Deprotection of Semicarbazones under Solvent-Free Conditions

Effective methodologies for efficient preparation of semicarbazones from aldehydes or ketones via milling and the subsequent regeneration of the parent carbonyls by gaseous nitrogen dioxide are described under solid-solid and gas-solid reaction conditions, respectively. These methods are fast, simple and environmentally benign which do not require the use of any auxiliaries such as catalyst...

full text

Synthesis of substituted trisphenols by use of a double acidic ionic liquid under solvent-free conditions

3-methyl-1-(4-sulfobuthyl)-1-H-imidazol-3ium hydrogen sulfate, as a dual acidic ionic liquid (DAIL), was found to be an efficient catalyst for the simple, rapid and green synthesis of substituted trisphenols from the condensation of different substituted phenols and 2,6-bis (methylol) phenols (BMP). DAIL catalyst efficiently promoted the reaction between phenols and BMPs with a variety of funct...

full text

Synthesis of substituted trisphenols by use of a double acidic ionic liquid under solvent-free conditions

3-methyl-1-(4-sulfobuthyl)-1-H-imidazol-3ium hydrogen sulfate, as a dual acidic ionic liquid (DAIL), was found to be an efficient catalyst for the simple, rapid and green synthesis of substituted trisphenols from the condensation of different substituted phenols and 2,6-bis (methylol) phenols (BMP). DAIL catalyst efficiently promoted the reaction between phenols and BMPs with a variety of funct...

full text

Synthesis of Metallophthalocyanines Under Solvent Free Conditions Using Microwave Irradiation

Phthalocyanine complexes of Cu, Co, Ni, Fe, Zn, Pd, Pt and Ru have been synthesized from reaction between phthalonitrile and proper metal salts upon exposure to microwave irradiation under solvent-free conditions and considerably reduced reaction times.

full text

(CTA)3[SiW12]-Li+-MMT: Efficient nanocatalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions

A highly practical and efficient preparation of 3,4-Dihydropyrimidin-2(1H)-one derivatives was developed via an efficient and simple nanocatalyst and promoted multi-component reaction of ethyl acetoacetate, aromatic aldehyde, and urea in the presence of a catalytic amount of (CTA)3[SiW12]-Li+-MMT under solvent-free conditions. In comparison to the conve...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue Issue 3- Special issue: Nanocatalysis

pages  297- 304

publication date 2016-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023